

COMMON CORE STATE STANDARDS FOR Mathematics

Traditional Pathway Content Standards
 Morton High School

Overview

The Common Core State Standards (CCSS) for Mathematics are organized by grade level in Grades K-8. At the high school level, the standards are organized by conceptual category (number and quantity, algebra, functions, geometry, modeling and probability and statistics), showing the body of knowledge students should learn in each category to be college and career ready, and to be prepared to study more advanced mathematics. As states consider how to implement the high school standards, an important consideration is how the high school CCSS might be organized into courses that provide a strong foundation for post-secondary success. To address this need, Achieve (in partnership with the Common Core writing team) has convened a group of experts, including state mathematics experts, teachers, mathematics faculty from two and four year institutions, mathematics teacher educators, and workforce representatives to develop Model Course Pathways in Mathematics based on the Common Core State Standards.

In considering this document, there are four things important to note:

1. The pathways and courses are models, not mandates. They illustrate possible approaches to organizing the content of the CCSS into coherent and rigorous courses that lead to college and career readiness. States and districts are not expected to adopt these courses as is; rather, they are encouraged to use these pathways and courses as a starting point for developing their own.
2. All college and career ready standards (those without a +) are found in each pathway. A few (+) standards are included to increase coherence but are not necessarily expected to be addressed on high stakes assessments.
3. The course descriptions delineate the mathematics standards to be covered in a course; they are not prescriptions for curriculum or pedagogy. Additional work will be needed to create coherent instructional programs that help students achieve these standards.
4. Units within each course are intended to suggest a possible grouping of the standards into coherent blocks; in this way, units may also be considered "critical areas" or "big ideas", and these terms are used interchangeably throughout the document. The ordering of the clusters within a unit follows the order of the standards document in most cases, not the order in which they might be taught. Attention to ordering content within a unit will be needed as instructional programs are developed.
5. While courses are given names for organizational purposes, states and districts are encouraged to carefully consider the content in each course and use names that they feel are most appropriate. Similarly, unit titles may be adjusted by states and districts.

While the focus of this document is on organizing the Standards for Mathematical Content into model pathways to college and career readiness, the content standards must also be connected to the Standards for Mathematical Practice to ensure that the skills needed for later success are developed. In particular, Modeling (defined by a * in the CCSS) is defined as both a conceptual category for high school mathematics and a mathematical practice and is an important avenue for motivating students to study mathematics, for building their understanding of mathematics, and for preparing them for future success. Development of the pathways into instructional programs will require careful attention to modeling and the mathematical practices. Assessments based on these pathways should reflect both the content and mathematical practices standards.

Overview of the Traditional Pathway for the Common Core State Mathematics Standards

This table shows the domains and clusters in each course in the Traditional Pathway. The standards from each cluster included in that course are listed below each cluster. For each course, limits and focus for the clusters are shown in italics.

	Domains	High School Algebra I	Geometry	Algebra II	Fourth Courses*
	The Real Number System	- Extend the properties of exponents to rational exponents. N.RN.1, 2 - Use properties of rational and irrational numbers. N.RN. 3			
	Quantities	- Reason quantitatively and use units to solve problems. Foundation for work with expressions, equations and functions $\text { N.Q.1, 2, } 3$			
	The Complex Number System			-Perform arithmetic operations with complex numbers. N.CN.1, 2 - Use complex numbers in polynomial identities and equations. Polynomials with real coefficients N.CN.7, (+) 8, (+) 9	- Perform arithmetic operations with complex numbers. (+) N.CN. 3 -Represent complex numbers and their operations on the complex plane. (+) N.CN.4, 5, 6
	Vector Quantities and Matrices				- Represent and model with vector quantities. (+) N.VM.1, 2, 3 - Perform operations on vectors. (+) N.VM.4a, 4b, 4c, 5a, 5b - Perform operations on matrices and use matrices in applications. (+) N.VM.6, 7, 8, 9, 10, 11, 12

[^0]| | Domains | High School Algebra I | Geometry | Algebra II | Fourth Courses |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Seeing Structure in Expressions | - Interpret the structure of expressions.
 Linear, exponential, quadratic
 A.SSE.1a, 1b, 2
 -Write expressions in equivalent forms to solve problems.
 Quadratic and exponential
 A.SSE.3a, 3b, 3c | | - Interpret the structure of expressions.
 Polynomial and rational $\text { A.SSE.1a, 1b, } 2$
 - Write expressions in equivalent forms to solve problems.
 A.SSE. 4 | |
| $\begin{aligned} & \text { © } \\ & \frac{0}{\circ} \\ & \frac{\mathbf{0}}{\mathbf{\alpha}} \end{aligned}$ | Arithmetic with Polynomials and Rational Expressions | - Perform arithmetic operations on polynomials.
 Linear and quadratic
 A.APR. 1 | | - Perform arithmetic operations on polynomials.
 Beyond quadratic
 A.APR. 1
 - Understand the relationship between zeros and factors of polynomials.
 A.APR.2, 3
 - Use polynomial identities to solve problems.
 A.APR.4, (+) 5
 - Rewrite rational expressions.
 Linear and quadratic denominators
 A.APR.6, (+) 7 | |
| | Creating Equations | - Create equations that describe numbers or relationships.
 Linear, quadratic, and exponential (integer inputs only); for A.CED. 3 linear only
 A.CED.1, 2, 3, 4 | | - Create equations that describe numbers or relationships.
 Equations using all available types of expressions, including simple root functions $\text { A.CED.1, 2, 3, } 4$ | |

- Understand solving equations as a process of reasoning and explain the reasoning.
Master linear; learn as general principle

$$
\text { A.REI. } 1
$$

- Solve equations and inequalities in one variable.
Linear inequalities; literal that are linear in the variables being solved for; quadratics with real solutions
A.REI.3, 4a, 4b
- Solve systems of equations.
Linear-linear and linearquadratic
A.REI.5, 6, 7
-Represent and solve equations and inequalities graphically.
Linear and exponential; learn as general principle
A.REI.10, 11, 12
- Understand the concept of a function and use function notation.

Learn as general principle; focus on linear and exponential and on arithmetic and geometric sequences

$$
\text { F.IF.1, 2, } 3
$$

- Interpret functions that arise in applications in terms of a context.
Linear, exponential, and quadratic
F.IF.4, 5, 6
- Analyze functions using different representations.
Linear, exponential, quadratic, absolute
value, step, piecewisedefined
F.IF.7a, 7b, 7e, 8a, 8b, 9

	Domains	High School Algebra I	Geometry	Algebra II	Fourth Courses
	Building Functions	- Build a function that models a relationship between two quantities. For F.BF.1, 2, linear, exponential, and quadratic F.BF.1a, 1b, 2 - Build new functions from existing functions. Linear, exponential, quadratic, and absolute value; for F.BF.4a, linear only F.BF.3, 4a		- Build a function that models a relationship between two quantities. Include all types of functions studied F.BF.1b - Build new functions from existing functions. Include simple radical, rational, and exponential functions; emphasize common effect of each transformation across function types F.BF.3, 4a	- Build a function that models a relationship between two quantities. (+) F.BF.1c - Build new functions from existing functions. (+) F.BF.4b, 4c, 4d, 5
	Linear, Quadratic, and Exponential Models	- Construct and compare linear, quadratic, and exponential models and solve problems. F.LE.1a, 1b, 1c, 2, 3 - Interpret expressions for functions in terms of the situation they model. Linear and exponential of form $f(x)=b^{x}+k$ F.LE. 5		- Construct and compare linear, quadratic, and exponential models and solve problems. Logarithms as solutions for exponentials F.LE. 4	
	Trigonometric Functions			- Extend the domain of trigonometric functions using the unit circle. F.TF.1, 2 - Model periodic phenomena with trigonometric functions. F.TF. 5 - Prove and apply trigonometric identities. F.TF. 8	- Extend the domain of trigonometric functions using the unit circle. (+) F.TF.3, 4 - Model periodic phenomena with trigonometric functions. (+) F.TF. 6, 7 -Prove and apply trigonometric identities. (+) F.TF. 9

Geometry

- Experiment with transformations in the plane.
G.CO.1, 2, 3, 4, 5
- Understand
congruence in terms of rigid motions.
Build on rigid motions as a familiar starting point for development of concept of geometric proof
G.CO.6, 7, 8
- Prove geometric theorems.

Focus on validity of underlying reasoning while using variety of ways of writing proofs

$$
\text { G.CO.9, 10, } 11
$$

- Make geometric constructions.
Formalize and explain
processes
G.CO.12, 13
- Understand similarity in terms of similarity transformations.
G.SRT.1a, 1b, 2, 3
- Prove theorems involving similarity.
G.SRT.4, 5
- Define trigonometric ratios and solve problems involving right triangles.
G.SRT.6, 7, 8
- Apply trigonometry to general triangles.
G.SRT.9. 10, 11

	Domains	High School Algebra I	Geometry	Algebra II	Fourth Courses
	Circles		- Understand and apply theorems about circles. $\text { G.C.1, 2, 3, (+) } 4$ - Find arc lengths and areas of sectors of circles. Radian introduced only as unit of measure G.C. 5		
$\begin{aligned} & \text { ? } \\ & \stackrel{0}{0} \\ & \text { O} \\ & 0 \\ & \hline 0 \end{aligned}$	Expressing Geometric Properties with Equations		- Translate between the geometric description and the equation for a conic section. G.GPE.1, 2 - Use coordinates to prove simple geometric theorems algebraically. Include distance formula; relate to Pythagorean theorem G.GPE. 4, 5, 6, 7		- Translate between the geometric description and the equation for a conic section. (+) G.GPE. 3
	Geometric Measurement and Dimension		- Explain volume formulas and use them to solve problems. $\text { G.GMD.1, } 3$ - Visualize the relation between twodimensional and threedimensional objects. $\text { G.GMD. } 4$		- Explain volume formulas and use them to solve problems. (+) G.GMD. 2
	Modeling with Geometry		- Apply geometric concepts in modeling situations. $\text { G.MG.1, 2, } 3$		
	Interpreting Categorical and Quantitative Data	- Summarize, represent, and interpret data on a single count or measurement variable. $\text { S.ID.1, 2, } 3$ - Summarize, represent, and interpret data on two categorical and quantitative variables. Linear focus, discuss general principle S.ID.5, 6a, 6b, 6c - Interpret linear models S.ID.7, 8, 9		- Summarize, represent, and interpret data on a single count or measurement variable. $\text { S.ID. } 4$	

	Domains	High School Algebra I	Geometry	Algebra II	Fourth Courses
	Making Inferences and Justifying Conclusions			- Understand and evaluate random processes underlying statistical experiments. $\text { S.IC.1, } 2$ - Make inferences and justify conclusions from sample surveys, experiments and observational studies. $\text { S.IC. 3, 4, 5, } 6$	
	Conditional Probability and the Rules of Probability		- Understand independence and conditional probability and use them to interpret data. Link to data from simulations or experiments $\text { S.CP.1, 2, 3, 4, } 5$ -Use the rules of probability to compute probabilities of compound events in a uniform probability model. $\text { S.CP.6, 7, (+) 8, (+) } 9$		
	Using Probability to Make Decisions		-Use probability to evaluate outcomes of decisions. Introductory; apply counting rules (+) S.MD.6, 7	- Use probability to evaluate outcomes of decisions. Include more complex situations (+) S.MD.6, 7	- Calculate expected values and use them to solve problems. $\text { (+) S.MD.1, 2, 3, } 4$ - Use probability to evaluate outcomes of decisions.. (+) S.MD. 5a, 5b

Traditional Pathway: High School Algebra I

The fundamental purpose of this course is to formalize and extend the mathematics that students learned in the middle grades. Because it is built on the middle grades standards, this is a more ambitious version of Algebra I than has generally been offered. The critical areas, called units, deepen and extend understanding of linear and exponential relationships by contrasting them with each other and by applying linear models to data that exhibit a linear trend, and students engage in methods for analyzing, solving, and using quadratic functions. The Mathematical Practice Standards apply throughout each course and, together with the content standards, prescribe that students experience mathematics as a coherent, useful, and logical subject that makes use of their ability to make sense of problem situations.

Critical Area 1: By the end of eighth grade, students have learned to solve linear equations in one variable and have applied graphical and algebraic methods to analyze and solve systems of linear equations in two variables. Now, students analyze and explain the process of solving an equation. Students develop fluency writing, interpreting, and translating between various forms of linear equations and inequalities, and using them to solve problems. They master the solution of linear equations and apply related solution techniques and the laws of exponents to the creation and solution of simple exponential equations.

Critical Area 2: In earlier grades, students define, evaluate, and compare functions, and use them to model relationships between quantities. In this unit, students will learn function notation and develop the concepts of domain and range. They explore many examples of functions, including sequences; they interpret functions given graphically, numerically, symbolically, and verbally, translate between representations, and understand the limitations of various representations. Students build on and informally extend their understanding of integer exponents to consider exponential functions. They compare and contrast linear and exponential functions, distinguishing between additive and multiplicative change. Students explore systems of equations and inequalities, and they find and interpret their solutions. They interpret arithmetic sequences as linear functions and geometric sequences as exponential functions.

Critical Area 3: This unit builds upon prior students' prior experiences with data, providing students with more formal means of assessing how a model fits data. Students use regression techniques to describe approximately linear relationships between quantities. They use graphical representations and knowledge of the context to make judgments about the appropriateness of linear models. With linear models, they look at residuals to analyze the goodness of fit.

Critical Area 4: In this unit, students build on their knowledge from unit 2, where they extended the laws of exponents to rational exponents. Students apply this new understanding of number and strengthen their ability to see structure in and create quadratic and exponential expressions. They create and solve equations, inequalities, and systems of equations involving quadratic expressions.

Critical Area 5: In this unit, students consider quadratic functions, comparing the key characteristics of quadratic functions to those of linear and exponential functions. They select from among these functions to model phenomena. Students learn to anticipate the graph of a quadratic function by interpreting various forms of quadratic expressions. In particular, they identify the real solutions of a quadratic equation as the zeros of a related quadratic function. Students expand their experience with functions to include more specialized functions-absolute value, step, and those that are piecewise-defined.

Units

Unit 1

Relationships Between Quantities and Reasoning with

Equations

Unit 2

Linear and Exponential Relationships

Unit 3

Descriptive Statistics

Unit 4

Expressions and Equations

Includes Standard Clusters*

- Reason quantitatively and use units to solve problems.
- Interpret the structure of expressions.
- Create equations that describe numbers or relationships.
- Understand solving equations as a process of reasoning and explain the reasoning.
- Solve equations and inequalities in one variable.
- Extend the properties of exponents to rational exponents.
- Solve systems of equations.
- Represent and solve equations and inequalities graphically.
- Understand the concept of a function and use function notation.
- Interpret functions that arise in applications in terms of a context.
- Analyze functions using different representations.
- Build a function that models a relationship between two quantities.
- Build new functions from existing functions.
- Construct and compare linear, quadratic, and exponential models and solve problems.
- Interpret expressions for functions in terms of the situation they model.
- Summarize, represent, and interpret data on a single count or measurement variable.
- Summarize, represent, and interpret data on two categorical and quantitative variables.
- Interpret linear models.
- Interpret the structure of expressions.
- Write expressions in equivalent forms to solve problems.
- Perform arithmetic operations on polynomials.
- Create equations that describe numbers or relationships.
- Solve equations and inequalities in one variable.
- Solve systems of equations.
- Use properties of rational and irrational numbers.
- Interpret functions that arise in applications in terms of a context.
- Analyze functions using different representations.
- Build a function that models a relationship between two quantities.
- Build new functions from existing functions.
- Construct and compare linear, quadratic, and exponential models and solve problems.

Mathematical Practice Standards

Make sense of problems and persevere in solving them.

Reason abstractly and quantitatively.

Construct viable

 arguments and critique the reasoning of others.
Model with mathematics.

Use appropriate tools strategically.

Attend to precision.

Look for and make use of structure.

Look for and express regularity in repeated reasoning.

[^1]
Unit 1: Relationships Between Quantities and Reasoning with Equations

By the end of eighth grade students have learned to solve linear equations in one variable and have applied graphical and algebraic methods to analyze and solve systems of linear equations in two variables. This unit builds on these earlier experiences by asking students to analyze and explain the process of solving an equation. Students develop fluency writing, interpreting, and translating between various forms of linear equations and inequalities, and using them to solve problems. They master the solution of linear equations and apply related solution techniques and the laws of exponents to the creation and solution of simple exponential equations. All of this work is grounded on understanding quantities and on relationships between them.

Unit 1: Relationships between Quantities and Reasoning with Equations				
Clusters with Instructional Notes		Common Core State Standards		
SKILLS TO MAINTAIN				
Reinforce understanding of the properties of integer exponents. The initial experience with exponential expressions, equations, and functions involves integer exponents and builds on this understanding.*				
- Reason quantitatively and use units to solve problems.	N.Q.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.			
Working with quantities and the				
relationships between them provides				
grounding for work with expressions,				
equations, and functions.				N.Q. 2 Define appropriate quantities for the purpose of descriptive
:---				
modeling.				

[^2]
Unit 1: Relationships between Quantities and Reasoning with Equations

Clusters with Instructional Notes

- Understand solving equations as a process of reasoning and explain the reasoning.

Students should focus on and master A.REI. 1 for linear equations and be able to extend and apply their reasoning to other types of equations in future courses. Students will solve exponential equations with logarithms in Algebra II.

- Solve equations and inequalities in one variable.

Extend earlier work with solving linear equations to solving linear inequalities in one variable and to solving literal equations that are linear in the variable being solved for. Include simple exponential equations that rely only on application of the laws of exponents, such as $5^{x}=125$ or $2^{x}=1 / 16$.

Common Core State Standards

A.REI. 1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
A.REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Unit 2: Linear and Exponential Relationships

In earlier grades, students define, evaluate, and compare functions, and use them to model relationships between quantities. In this unit, students will learn function notation and develop the concepts of domain and range. They move beyond viewing functions as processes that take inputs and yield outputs and start viewing functions as objects in their own right. They explore many examples of functions, including sequences; they interpret functions given graphically, numerically, symbolically, and verbally, translate between representations, and understand the limitations of various representations. They work with functions given by graphs and tables, keeping in mind that, depending upon the context, these representations are likely to be approximate and incomplete. Their work includes functions that can be described or approximated by formulas as well as those that cannot. When functions describe relationships between quantities arising from a context, students reason with the units in which those quantities are measured. Students explore systems of equations and inequalities, and they find and interpret their solutions. Students build on and informally extend their understanding of integer exponents to consider exponential functions. They compare and contrast linear and exponential functions, distinguishing between additive and multiplicative change. They interpret arithmetic sequences as linear functions and geometric sequences as exponential functions.

Unit 2: Linear and Exponential Relationships

Clusters with Instructional Notes

- Extend the properties of exponents to rational exponents.

In implementing the standards in curriculum, these standards should occur before discussing exponential functions with continuous domains.

- Solve systems of equations.

Build on student experiences graphing and solving systems of linear equations from middle school to focus on justification of the methods used. Include cases where the two equations describe the same line (yielding infinitely many solutions) and cases where two equations describe parallel lines (yielding no solution); connect to GPE. 5 when it is taught in Geometry, which requires students to prove the slope criteria for parallel lines.

- Represent and solve equations and inequalities graphically.

For A.REI.10, focus on linear and exponential equations and be able to adapt and apply that learning to other types of equations in future courses. For A.REI.11, focus on cases where $f(x)$ and $g(x)$ are linear or exponential.

Common Core State Standards

N.RN. 1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1 / 3}$ to be the cube root of 5 because we want $\left(5^{1 / 3}\right)^{3}=5\left({ }^{1 / 3}\right)^{3}$ to hold, so $\left(5^{1 / 3}\right)^{3}$ must equal 5 .
N.RN. 2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.
A.REI. 5 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.
A.REI. 6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
A.REI. 10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
A.REI. 11 Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*
A.REI. 12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Unit 2: Linear and Exponential Relationships

Clusters with Instructional Notes

Common Core State Standards

F.IF. 1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.
F.IF. 2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
F.IF. 3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)=f(1)=1, f(n+1)=f(n)$ $+f(n-1)$ for $n \geq 1$.
F.IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. ${ }^{\star}$
F.IF. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. ${ }^{\star}$
F.IF. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*

- Analyze functions using different representations.

For F.IF.7a, 7e, and 9 focus on linear and exponentials functions. Include comparisons of two functions presented algebraically. For example, compare the growth of two linear functions, or two exponential functions such as $y=3^{n}$ and $y=100^{2}$
F.IF. 7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. ${ }^{\star}$
a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
F.IF. 9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Unit 2: Linear and Exponential Relationships

Clusters with Instructional Notes

- Build a function that models a relationship between two quantities.

Limit to F.BF.1a, 1b, and 2 to linear and exponential functions. In F.BF.2, connect arithmetic sequences to linear functions and geometric sequences to exponential functions.

- Build new functions from existing functions.

Focus on vertical translations of graphs of linear and exponential functions. Relate the vertical translation of a linear function to its y-intercept.
While applying other transformations to a linear graph is appropriate at this level, it may be difficult for students to identify or distinguish between the effects of the other transformations included in this standard.

- Construct and compare linear, quadratic, and exponential models and solve problems.

For F.LE.3, limit to comparisons between linear and exponential models. In constructing linear functions in F.LE.2, draw on and consolidate previous work in Grade 8 on finding equations for lines and linear functions (8.EE.6, 8.F.4).

- Interpret expressions for functions in terms of the situation they model.

Limit exponential functions to those of the form $f(x)=b^{x}+k$.

Common Core State Standards

F.BF. 1 Write a function that describes a relationship between two quantities. ${ }^{\star}$
a. Determine an explicit expression, a recursive process, or steps for calculation from a context.
b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.
F.BF. 2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. ${ }^{\star}$
F.BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k$, $k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
F.LE. 1 Distinguish between situations that can be modeled with linear functions and with exponential functions.
a. Prove that linear functions grow by equal differences over equal intervals; and that exponential functions grow by equal factors over equal intervals.
b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
F.LE. 2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).
F.LE. 3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.
F.LE. 5 Interpret the parameters in a linear or exponential function in terms of a context.

Unit 3: Descriptive Statistics

Experience with descriptive statistics began as early as Grade 6. Students were expected to display numerical data and summarize it using measures of center and variability. By the end of middle school they were creating scatterplots and recognizing linear trends in data. This unit builds upon that prior experience, providing students with more formal means of assessing how a model fits data. Students use regression techniques to describe approximately linear relationships between quantities. They use graphical representations and knowledge of the context to make judgments about the appropriateness of linear models. With linear models, they look at residuals to analyze the goodness of fit.

Unit 3: Descriptive Statistics

Clusters with Instructional Notes

- Summarize, represent, and interpret data on a single count or measurement variable.

In grades 6-8, students describe center and spread in a data distribution. Here they choose a summary statistic appropriate to the characteristics of the data distribution, such as the shape of the distribution or the existence of extreme data points.

- Summarize, represent, and interpret data on two categorical and quantitative variables.

Students take a more sophisticated look at using a linear function to model the relationship between two numerical variables. In addition to fitting a line to data, students assess how well the model fits by analyzing residuals.
S.ID.6b should be focused on linear models, but may be used to preview quadratic functions in Unit 5 of this course.

- Interpret linear models.

Build on students' work with linear relationships in eighth grade and introduce the correlation coefficient. The focus here is on the computation and interpretation of the correlation coefficient as a measure of how well the data fit the relationship. The important distinction between a statistical relationship and a cause-and-effect relationship arises in S.ID.9.

Common Core State Standards

S.ID. 1 Represent data with plots on the real number line (dot plots, histograms, and box plots).
S.ID. 2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.
S.ID. 3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).
S.ID. 5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.
S.ID. 6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear and exponential models.
b. Informally assess the fit of a function by plotting and analyzing residuals.
c. Fit a linear function for a scatter plot that suggests a linear association.
S.ID. 7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
S.ID. 8 Compute (using technology) and interpret the correlation coefficient of a linear fit.
S.ID. 9 Distinguish between correlation and causation.

Unit 4: Expressions and Equations

In this unit, students build on their knowledge from unit 2, where they extended the laws of exponents to rational exponents. Students apply this new understanding of number and strengthen their ability to see structure in and create quadratic and exponential expressions. They create and solve equations, inequalities, and systems of equations involving quadratic expressions.

Unit 4: Expressions and Equations

Clusters with Instructional Notes

- Interpret the structure of expressions.

Focus on quadratic and exponential expressions. For A.SSE.1b, exponents are extended from the integer exponents found in Unit 1 to rational exponents focusing on those that represent square or cube roots.

- Write expressions in equivalent forms to solve problems.

It is important to balance conceptual understanding and procedural fluency in work with equivalent expressions. For example, development of skill in factoring and completing the square goes hand-in-hand with understanding what different forms of a quadratic expression reveal.

- Perform arithmetic operations on polynomials.

Focus on polynomial expressions that simplify to forms that are linear or quadratic in a positive integer power of x.

- Create equations that describe numbers or relationships.

Extend work on linear and exponential equations in Unit 1 to quadratic equations. Extend A.CED. 4 to formulas involving squared variables.

- Solve equations and inequalities in one variable.

Students should learn of the existence of the complex number system, but will not solve quadratics with complex solutions until Algebra II.

Common Core State Standards

A.SSE. 1 Interpret expressions that represent a quantity in terms of its context. ${ }^{\star}$
a. Interpret parts of an expression, such as terms, factors, and coefficients.
b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^{n}$ as the product of P and a factor not depending on P.
A.SSE. 2 Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.
A.SSE. 3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. ${ }^{\star}$
a. Factor a quadratic expression to reveal the zeros of the function it defines.
b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.
c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15^{t} can be rewritten as $\left(1.15^{1 / 12}\right)^{12 t} \approx 1.012^{12 t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.
A.APR. 1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
A.CED. 1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
A.CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
A.CED. 4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.
A.REI. 4 Solve quadratic equations in one variable.
a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form.
b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm b i$ for real numbers a and b.

Unit 4: Expressions and Equations

Clusters with Instructional Notes

Common Core State Standards

- Solve systems of equations.

Include systems consisting of one linear and one quadratic equation. Include systems that lead to work with fractions. For example, finding the intersections between $x^{2}+y^{2}=1$ and $y=$ $(x+1) / 2$ leads to the point $(3 / 5,4 / 5)$ on the unit circle, corresponding to the Pythagorean triple $3^{2}+4^{2}=5^{2}$.
A.REI. 7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-3 x$ and the circle $x^{2}+y^{2}=3$.

Unit 5: Quadratic Functions and Modeling

In preparation for work with quadratic relationships students explore distinctions between rational and irrational numbers. They consider quadratic functions, comparing the key characteristics of quadratic functions to those of linear and exponential functions. They select from among these functions to model phenomena. Students learn to anticipate the graph of a quadratic function by interpreting various forms of quadratic expressions. In particular, they identify the real solutions of a quadratic equation as the zeros of a related quadratic function. Students learn that when quadratic equations do not have real solutions the number system must be extended so that solutions exist, analogous to the way in which extending the whole numbers to the negative numbers allows $x+1=0$ to have a solution. Formal work with complex numbers comes in Algebra II. Students expand their experience with functions to include more specialized functions-absolute value, step, and those that are piecewise-defined.

Unit 5: Quadratic Functions and Modeling

Clusters with Instructional Notes

- Use properties of rational and irrational numbers.

Connect N.RN. 3 to physical situations, e.g., finding the perimeter of a square of area 2.

- Interpret functions that arise in applications in terms of a context.

Focus on quadratic functions; compare with linear and exponential functions studied in Unit 2.

- Analyze functions using different representations.

For F.IF.7b, compare and contrast absolute value, step and piecewisedefined functions with linear, quadratic, and exponential functions. Highlight issues of domain, range, and usefulness when examining piecewisedefined functions. Note that this unit, and in particular in F.IF.8b, extends the work begun in Unit 2 on exponential functions with integer exponents. For F.IF.9, focus on expanding the types of functions considered to include, linear, exponential, and quadratic.
Extend work with quadratics to include the relationship between coefficients and roots, and that once roots are known, a quadratic equation can be factored.
N.RN. 3 Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
F.IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. ${ }^{\star}$
F.IF. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. ${ }^{\star}$
F.IF. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*
F.IF. 7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.^
a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
F.IF. 8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=(1.02)^{t}, y=(0.97)^{t}, y=(1.01)^{12 t}, y=(1.2)^{t / 10}$, and classify them as representing exponential growth or decay.
F.IF. 9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Unit 5: Quadratic Functions and Modeling

Clusters with Instructional Notes

- Build a function that models a relationship between two quantities.

Focus on situations that exhibit a quadratic relationship.

- Build new functions from existing functions.

For F.BF.3, focus on quadratic functions, and consider including absolute value functions. For F.BF.4a, focus on linear functions but consider simple situations where the domain of the function must be restricted in order for the inverse to exist, such as $f(x)=x^{2}, x>0$.

- Construct and compare linear, quadratic, and exponential models and solve problems.

Compare linear and exponential growth to quadratic growth.

Common Core State Standards

F.BF. 1 Write a function that describes a relationship between two quantities. ${ }^{\star}$
a. Determine an explicit expression, a recursive process, or steps for calculation from a context.
b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.
F.BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k$, $k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
F.BF. 4 Find inverse functions.
a. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 x^{3}$ or $f(x)=(x+1) /(x-1)$ for $x \neq 1$.
F.LE. 3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

Traditional Pathway: Geometry

TheThe fundamental purpose of the course in Geometry is to formalize and extend students' geometric experiences from the middle grades. Students explore more complex geometric situations and deepen their explanations of geometric relationships, moving towards formal mathematical arguments. Important differences exist between this Geometry course and the historical approach taken in Geometry classes. For example, transformations are emphasized early in this course. Close attention should be paid to the introductory content for the Geometry conceptual category found in the high school CCSS. The Mathematical Practice Standards apply throughout each course and, together with the content standards, prescribe that students experience mathematics as a coherent, useful, and logical subject that makes use of their ability to make sense of problem situations. The critical areas, organized into six units are as follows.

Critical Area 1: In previous grades, students were asked to draw triangles based on given measurements. They also have prior experience with rigid motions: translations, reflections, and rotations and have used these to develop notions about what it means for two objects to be congruent. In this unit, students establish triangle congruence criteria, based on analyses of rigid motions and formal constructions. They use triangle congruence as a familiar foundation for the development of formal proof. Students prove theorems-using a variety of formats-and solve problems about triangles, quadrilaterals, and other polygons. They apply reasoning to complete geometric constructions and explain why they work.

Critical Area 2: Students apply their earlier experience with dilations and proportional reasoning to build a formal understanding of similarity. They identify criteria for similarity of triangles, use similarity to solve problems, and apply similarity in right triangles to understand right triangle trigonometry, with particular attention to special right triangles and the Pythagorean theorem. Students develop the Laws of Sines and Cosines in order to find missing measures of general (not necessarily right) triangles, building on students' work with quadratic equations done in the first course. They are able to distinguish whether three given measures (angles or sides) define $0,1,2$, or infinitely many triangles.

Critical Area 3: Students' experience with two-dimensional and three-dimensional objects is extended to include informal explanations of circumference, area and volume formulas. Additionally, students apply their knowledge of two-dimensional shapes to consider the shapes of cross-sections and the result of rotating a two-dimensional object about a line.

Critical Area 4: Building on their work with the Pythagorean theorem in $8^{\text {th }}$ grade to find distances, students use a rectangular coordinate system to verify geometric relationships, including properties of special triangles and quadrilaterals and slopes of parallel and perpendicular lines, which relates back to work done in the first course. Students continue their study of quadratics by connecting the geometric and algebraic definitions of the parabola.

Critical Area 5: In this unit students prove basic theorems about circles, such as a tangent line is perpendicular to a radius, inscribed angle theorem, and theorems about chords, secants, and tangents dealing with segment lengths and angle measures. They study relationships among segments on chords, secants, and tangents as an application of similarity. In the Cartesian coordinate system, students use the distance formula to write the equation of a circle when given the radius and the coordinates of its center. Given an equation of a circle, they draw the graph in the coordinate plane, and apply techniques for solving quadratic equations, which relates back to work done in the first course, to determine intersections between lines and circles or parabolas and between two circles.

Critical Area 6: Building on probability concepts that began in the middle grades, students use the languages of set theory to expand their ability to compute and interpret theoretical and experimental probabilities for compound events, attending to mutually exclusive events, independent events, and conditional probability. Students should make use of geometric probability models wherever possible. They use probability to make informed decisions.

Units	Includes Standard Clusters*	Mathematical Practice Standards
Unit 1 Congruence, Proof, and Constructions	- Experiment with transformations in the plane. - Understand congruence in terms of rigid motions. - Prove geometric theorems. - Make geometric constructions.	
Unit 2 Similarity, Proof, and Trigonometry	- Understand similarity in terms of similarity transformations. - Prove theorems involving similarity. - Define trigonometric ratios and solve problems involving right triangles. - Apply geometric concepts in modeling situations. - Apply trigonometry to general triangles.	Make sense of problems and persevere in solving them. Reason abstractly and quantitatively.
Unit 3 Extending to Three Dimensions	- Explain volume formulas and use them to solve problems. - Visualize the relation between two-dimensional and three-dimensional objects. - Apply geometric concepts in modeling situations.	Construct viable arguments and critique the reasoning of others. Model with mathematics.
Unit 4 Connecting Algebra and Geometry through Coordinates	- Use coordinates to prove simple geometric theorems algebraically. - Translate between the geometric description and the equation for a conic section.	Use appropriate tools strategically.
Unit 5 Circles With and Without Coordinates	- Understand and apply theorems about circles. - Find arc lengths and areas of sectors of circles. - Translate between the geometric description and the equation for a conic section. - Use coordinates to prove simple geometric theorem algebraically. - Apply geometric concepts in modeling situations.	Attend to precision. Look for and make use of structure. Look for and express regularity in repeated reasoning.
Unit 6 Applications of Probability	- Understand independence and conditional probability and use them to interpret data. - Use the rules of probability to compute probabilities of compound events in a uniform probability model. - Use probability to evaluate outcomes of decisions.	

[^3]
Unit 1: Congruence, Proof, and Constructions

In previous grades, students were asked to draw triangles based on given measurements. They also have prior experience with rigid motions: translations, reflections, and rotations and have used these to develop notions about what it means for two objects to be congruent. In this unit, students establish triangle congruence criteria, based on analyses of rigid motions and formal constructions. They use triangle congruence as a familiar foundation for the development of formal proof. Students prove theorems-using a variety of formats-and solve problems about triangles, quadrilaterals, and other polygons. They apply reasoning to complete geometric constructions and explain why they work.

Unit 1: Congruence, Proof, and Constructions

Clusters and Instructional Notes

- Experiment with transformations in the plane.

Build on student experience with rigid motions from earlier grades. Point out the basis of rigid motions in geometric concepts, e.g., translations move points a specified distance along a line parallel to a specified line; rotations move objects along a circular arc with a specified center through a specified angle.

- Understand congruence in terms of rigid motions.

Rigid motions are at the foundation of the definition of congruence. Students reason from the basic properties of rigid motions (that they preserve distance and angle), which are assumed without proof. Rigid motions and their assumed properties can be used to establish the usual triangle congruence criteria, which can then be used to prove other theorems.

- Prove geometric theorems.

Encourage multiple ways of writing proofs, such as in narrative paragraphs, using flow diagrams, in two-column format, and using diagrams without words. Students should be encouraged to focus on the validity of the underlying reasoning while exploring a variety of formats for expressing that reasoning. Implementation of G.CO. 10 may be extended to include concurrence of perpendicular bisectors and angle bisectors as preparation for G.C. 3 in Unit 5.

Common Core State Standards

G.CO. 1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
G.CO. 2 Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
G.CO. 3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
G.CO. 4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
G.CO. 5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
G.CO. 6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
G.CO. 7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
G.CO. 8 Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
G.CO. 9 Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
G.CO. 10 Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
G.CO. 11 Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

Unit 1: Congruence, Proof, and Constructions

Clusters and Instructional Notes

Common Core State Standards

- Make geometric constructions.

Build on prior student experience with simple constructions. Emphasize the ability to formalize and explain how these constructions result in the desired objects.
Some of these constructions are closely related to previous standards and can be introduced in conjunction with them.
G.CO. 12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
G.CO. 13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.

Unit 2: Similarity, Proof, and Trigonometry

Students apply their earlier experience with dilations and proportional reasoning to build a formal understanding of similarity. They identify criteria for similarity of triangles, use similarity to solve problems, and apply similarity in right triangles to understand right triangle trigonometry, with particular attention to special right triangles and the Pythagorean theorem. Students develop the Laws of Sines and Cosines in order to find missing measures of general (not necessarily right) triangles. They are able to distinguish whether three given measures (angles or sides) define 0 , 1,2 , or infinitely many triangles.

Unit 2: Similarity, Proof, and Trigonometry

Clusters and Instructional Notes

- Understand similarity in terms of similarity transformations.
- Prove theorems involving similarity.
- Define trigonometric ratios and solve problems involving right triangles.
- Apply geometric concepts in modeling situations.

Focus on situations well modeled by trigonometric ratios for acute angles.

- Apply trigonometry to general triangles.

With respect to the general case of the Laws of Sines and Cosines, the definitions of sine and cosine must be extended to obtuse angles.

Common Core State Standards

G.SRT. 1 Verify experimentally the properties of dilations given by a center and a scale factor.
a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.
b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.
G.SRT. 2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
G.SRT. 3 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.
G.SRT. 4 Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.
G.SRT. 5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
G.SRT. 6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
G.SRT. 7 Explain and use the relationship between the sine and cosine of complementary angles.
G.SRT. 8 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.*
G.MG. 1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).*
G.MG. 2 Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).*
G.MG. 3 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).*
G.SRT. 9 (+) Derive the formula $A=1 / 2 \mathrm{ab} \sin (\mathrm{C})$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.
G.SRT. 10 (+) Prove the Laws of Sines and Cosines and use them to solve problems.
G.SRT. 11 (+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).

Unit 3: Extending to Three Dimensions

Students' experience with two-dimensional and three-dimensional objects is extended to include informal explanations of circumference, area and volume formulas. Additionally, students apply their knowledge of two-dimensional shapes to consider the shapes of cross-sections and the result of rotating a two-dimensional object about a line.

Unit 3: Extending to Three Dimensions

Clusters and Instructional Notes

Common Core State Standards

- Explain volume formulas and use them to solve problems.

Informal arguments for area and volume formulas can make use of the way in which area and volume scale under similarity transformations: when one figure in the plane results from another by applying a similarity transformation with scale factor k, its area is k^{2} times the area of the first. Similarly, volumes of solid figures scale by k^{3} under a similarity transformation with scale factor k.

- Visualize the relation between twodimensional and three-dimensional objects.
- Apply geometric concepts in modeling situations.

Focus on situations that require relating two- and three-dimensional objects, determining and using volume, and the trigonometry of general triangles.
G.GMD. 1 Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments.
G.GMD. 3 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.^
G.GMD. 4 Identify the shapes of two-dimensional cross-sections of threedimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.
G.MG. 1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).*

Unit 4: Connecting Algebra and Geometry Through Coordinates

Building on their work with the Pythagorean theorem in $8^{\text {th }}$ grade to find distances, students use a rectangular coordinate system to verify geometric relationships, including properties of special triangles and quadrilaterals and slopes of parallel and perpendicular lines. Students continue their study of quadratics by connecting the geometric and algebraic definitions of the parabola.

Unit 4: Connecting Algebra and Geometry Through Coordinates

Clusters and Instructional Notes

Common Core State Standards

- Use coordinates to prove simple geometric theorems algebraically.

This unit has a close connection with the next unit. For example, a curriculum might merge G.GPE. 1 and the Unit 5 treatment of G.GPE. 4 with the standards in this unit. Reasoning with triangles in this unit is limited to right triangles; e.g., derive the equation for a line through two points using similar right triangles.
Relate work on parallel lines in G.GPE. 5 to work on A.REI. 5 in High School Algebra I involving systems of equations having no solution or infinitely many solutions.
G.GPE. 7 provides practice with the distance formula and its connection with the Pythagorean theorem.

- Translate between the geometric description and the equation for a conic section.

The directrix should be parallel to a coordinate axis.
G.GPE. 4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{ } 3)$ lies on the circle centered at the origin and containing the point $(0,2)$.
G.GPE. 5 Prove the slope criteria for parallel and perpendicular lines and uses them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
G.GPE. 6 Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
G.GPE. 7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. ${ }^{\star}$
G.GPE. 2 Derive the equation of a parabola given a focus and directrix.

Unit 5: Circles With and Without Coordinates

In this unit, students prove basic theorems about circles, with particular attention to perpendicularity and inscribed angles, in order to see symmetry in circles and as an application of triangle congruence criteria. They study relationships among segments on chords, secants, and tangents as an application of similarity. In the Cartesian coordinate system, students use the distance formula to write the equation of a circle when given the radius and the coordinates of its center. Given an equation of a circle, they draw the graph in the coordinate plane, and apply techniques for solving quadratic equations to determine intersections between lines and circles or parabolas and between two circles.

Unit 5: Circles With and Without Coordinates

Clusters and Instructional Notes

Common Core State Standards

- Understand and apply theorems about circles.

Find arc lengths and areas of sectors of circles.

Emphasize the similarity of all circles. Note that by similarity of sectors with the same central angle, arc lengths are proportional to the radius. Use this as a basis for introducing radian as a unit of measure. It is not intended that it be applied to the development of circular trigonometry in this course.

- Translate between the geometric description and the equation for a conic section.
- Use coordinates to prove simple geometric theorems algebraically.

Include simple proofs involving circles.

- Apply geometric concepts in modeling situations.

Focus on situations in which the analysis of circles is required.
G.C. 1 Prove that all circles are similar.
G.C. 2 Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
G.C. 3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
G.C. $4_{(+)}$Construct a tangent line from a point outside a given circle to the circle.
G.C. 5 Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.
G.GPE. 1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
G.GPE. 4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{ } 3)$ lies on the circle centered at the origin and containing the point $(0,2)$.
G.MG. 1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).*

Unit 6: Applications of Probability

Building on probability concepts that began in the middle grades, students use the languages of set theory to expand their ability to compute and interpret theoretical and experimental probabilities for compound events, attending to mutually exclusive events, independent events, and conditional probability. Students should make use of geometric probability models wherever possible. They use probability to make informed decisions.

Unit 6: Applications of Probability

Clusters and Instructional Notes

- Understand independence and conditional probability and use them to interpret data.

Build on work with two-way tables from Algebra I Unit 3 (S.ID.5) to develop understanding of conditional probability and independence.

Common Core State Standards

S.CP. 1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").
S.CP. 2 Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.
S.CP. 3 Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.
S.CP. 4 Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.
S.CP. 5 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.

- Use the rules of probability to compute probabilities of compound events in a uniform probability model.
- Use probability to evaluate outcomes of decisions.

This unit sets the stage for work in Algebra II, where the ideas of statistical inference are introduced. Evaluating the risks associated with conclusions drawn from sample data (i.e. incomplete information) requires an understanding of probability concepts.
S.CP. 6 Find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A, and interpret the answer in terms of the model.
S.CP. 7 Apply the Addition Rule, $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$, and interpret the answer in terms of the model.
S.CP. $8_{(+)}$Apply the general Multiplication Rule in a uniform probability model, $P(A$ and $B)=P(A) P(B \mid A)=P(B) P(A \mid B)$, and interpret the answer in terms of the model.
S.CP. $9_{(+)}$Use permutations and combinations to compute probabilities of compound events and solve problems.
S.MD. 6 (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).
S.MD. 7 (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).

Traditional Pathway: Algebra II

Building on their work with linear, quadratic, and exponential functions, students extend their repertoire of functions to include polynomial, rational, and radical functions. ${ }^{2}$ Students work closely with the expressions that define the functions, and continue to expand and hone their abilities to model situations and to solve equations, including solving quadratic equations over the set of complex numbers and solving exponential equations using the properties of logarithms. The Mathematical Practice Standards apply throughout each course and, together with the content standards, prescribe that students experience mathematics as a coherent, useful, and logical subject that makes use of their ability to make sense of problem situations. The critical areas for this course, organized into four units, are as follows:

Critical Area 1: This unit develops the structural similarities between the system of polynomials and the system of integers. Students draw on analogies between polynomial arithmetic and base-ten computation, focusing on properties of operations, particularly the distributive property. Students connect multiplication of polynomials with multiplication of multi-digit integers, and division of polynomials with long division of integers. Students identify zeros of polynomials, including complex zeros of quadratic polynomials, and make connections between zeros of polynomials and solutions of polynomial equations. The unit culminates with the fundamental theorem of algebra. A central theme of this unit is that the arithmetic of rational expressions is governed by the same rules as the arithmetic of rational numbers.

Critical Area 2: Building on their previous work with functions, and on their work with trigonometric ratios and circles in Geometry, students now use the coordinate plane to extend trigonometry to model periodic phenomena.

Critical Area 3: In this unit students synthesize and generalize what they have learned about a variety of function families. They extend their work with exponential functions to include solving exponential equations with logarithms. They explore the effects of transformations on graphs of diverse functions, including functions arising in an application, in order to abstract the general principle that transformations on a graph always have the same effect regardless of the type of the underlying function. They identify appropriate types of functions to model a situation, they adjust parameters to improve the model, and they compare models by analyzing appropriateness of fit and making judgments about the domain over which a model is a good fit. The description of modeling as "the process of choosing and using mathematics and statistics to analyze empirical situations, to understand them better, and to make decisions" is at the heart of this unit. The narrative discussion and diagram of the modeling cycle should be considered when knowledge of functions, statistics, and geometry is applied in a modeling context.

Critical Area 4: In this unit, students see how the visual displays and summary statistics they learned in earlier grades relate to different types of data and to probability distributions. They identify different ways of collecting dataincluding sample surveys, experiments, and simulations-and the role that randomness and careful design play in the conclusions that can be drawn.

[^4]| Units | Includes Standard Clusters* | Mathematical Practice Standards |
| :---: | :---: | :---: |
| Unit 1
 Polynomial, Rational, and Radical Relationships | - Perform arithmetic operations with complex numbers.
 - Use complex numbers in polynomial identities and equations.
 - Interpret the structure of expressions.
 - Write expressions in equivalent forms to solve problems.
 - Perform arithmetic operations on polynomials.
 - Understand the relationship between zeros and factors of polynomials.
 - Use polynomial identities to solve problems.
 - Rewrite rational expressions.
 - Understand solving equations as a process of reasoning and explain the reasoning.
 - Represent and solve equations and inequalities graphically.
 - Analyze functions using different representations. | Make sense of problems and persevere in solving them.
 Reason abstractly and quantitatively.
 Construct viable arguments and critique the |
| Unit 2
 Trigonometric Functions | - Extend the domain of trigonometric functions using the unit circle.
 - Model periodic phenomena with trigonometric function.
 - Prove and apply trigonometric identites. | Model with mathematics.
 Use appropriate tools strategically. |
| Unit 3
 Modeling with Functions | - Create equations that describe numbers or relationships.
 - Interpret functions that arise in applications in terms of a context.
 - Analyze functions using different representations.
 - Build a function that models a relationship between two quantities.
 - Build new functions from existing functions.
 - Construct and compare linear, quadratic, and exponential models and solve problems. | Attend to precision.
 Look for and make use of structure.
 Look for and express regularity in repeated reasoning. |
| Unit 4
 Inferences and Conclusions from Data | - Summarize, represent, and interpret data on single count or measurement variable.
 - Understand and evaluate random processes underlying statistical experiments.
 - Make inferences and justify conclusions from sample surveys, experiments and observational studies.
 - Use probability to evaluate outcomes of decisions. | |

[^5]
Unit 1: Polynomial, Rational, and Radical Relationships

This unit develops the structural similarities between the system of polynomials and the system of integers. Students draw on analogies between polynomial arithmetic and base-ten computation, focusing on properties of operations, particularly the distributive property. Students connect multiplication of polynomials with multiplication of multi-digit integers, and division of polynomials with long division of integers. Students identify zeros of polynomials, including complex zeros of quadratic polynomials, and make connections between zeros of polynomials and solutions of polynomial equations. The unit culminates with the fundamental theorem of algebra. Rational numbers extend the arithmetic of integers by allowing division by all numbers except 0 . Similarly, rational expressions extend the arithmetic of polynomials by allowing division by all polynomials except the zero polynomial. A central theme of this unit is that the arithmetic of rational expressions is governed by the same rules as the arithmetic of rational numbers.

Unit 1: Polynomial, Rational, and Radical Relationships

Clusters and Instructional Notes

Common Core State Standards

- Perform arithmetic operations with complex numbers.
- Use complex numbers in polynomial identities and equations.

Limit to polynomials with real coefficients.

- Interpret the structure of expressions.

Extend to polynomial and rational expressions.

- Write expressions in equivalent forms to solve problems.

Consider extending A.SSE. 4 to infinite geometric series in curricular implementations of this course description.

- Perform arithmetic operations on polynomials.

Extend beyond the quadratic polynomials found in Algebra I.

- Understand the relationship between zeros and factors of polynomials.
N.CN. 1 Know there is a complex number i such that $i^{2}=-1$, and every complex number has the form $a+b i$ with a and b real.
N.CN. 2 Use the relation $i^{2}=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.
N.CN. 7 Solve quadratic equations with real coefficients that have complex solutions.
N.CN. $8_{(+)}$Extend polynomial identities to the complex numbers. For example, rewrite $x^{2}+4$ as $(x+2 i)(x-2 i)$.
N.CN. $9_{(+)}$Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.
A.SSE. 1 Interpret expressions that represent a quantity in terms of its context. ${ }^{\star}$
a. Interpret parts of an expression, such as terms, factors, and coefficients.
b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^{n}$ as the product of P and a factor not depending on P.

> A.SSE. 2 Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.
A.SSE. 4 Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments. ${ }^{\star}$
A.APR. 1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

[^6]
Unit 1: Polynomial, Rational, and Radical Relationships

Clusters and Instructional Notes

Common Core State Standards

- Use polynomial identities to solve problems.

This cluster has many possibilities for optional enrichment, such as relating the example in A.APR. 4 to the solution of the system $u^{2}+v^{2}=1, v=t(u+1)$, relating the Pascal triangle property of binomial coefficients to $(x+y)^{n+1}=$ $(x+y)(x+y)^{n}$, deriving explicit formulas for the coefficients, or proving the binomial theorem by induction.

- Rewrite rational expressions

The limitations on rational functions apply to the rational expressions in A.APR.6. A.APR. 7 requires the general division algorithm for polynomials.

- Understand solving equations as a process of reasoning and explain the reasoning.

Extend to simple rational and radical equations.

- Represent and solve equations and inequalities graphically.

Include combinations of linear, polynomial, rational, radical, absolute value, and exponential functions.

- Analyze functions using different representations.

Relate F.IF.7c to the relationship between zeros of quadratic functions and their factored forms
A.APR. 4 Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $\left(x^{2}+y^{2}\right)^{2}$ $=\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2}$ can be used to generate Pythagorean triples.
A.APR. $5(+)$ Know and apply the Binomial Theorem for the expansion of $(x+y)^{n}$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.

A.APR. 6 Rewrite simple rational expressions in different forms; write

 $a(x) / b(x)$ in the form $q(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.A.APR. $7_{(+)}$Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.
A.REI. 2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
A.REI. 11 Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.^
F.IF. 7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.^
c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.

Unit 2: Trigonometric Functions

Building on their previous work with functions, and on their work with trigonometric ratios and circles in Geometry, students now use the coordinate plane to extend trigonometry to model periodic phenomena.

Unit 2: Trigonometric Functions

Clusters and Instructional Notes \quad Common Core State Standards

- Extend the domain of trigonometric functions using the unit circle.
- Model periodic phenomena with trigonometric functions.
- Prove and apply trigonometric identities.

An Algebra II course with an additional focus on trigonometry could include the (+) standard F.TF.9: Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems. This could be limited to acute angles in Algebra II.
F.TF. 1 Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.
F.TF. 2 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
F.TF. 5 Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.*
F.TF. 8 Prove the Pythagorean identity $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$ and use it to find $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$, given $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$, and the quadrant of the angle.

Unit 3: Modeling with Functions

In this unit students synthesize and generalize what they have learned about a variety of function families. They extend their work with exponential functions to include solving exponential equations with logarithms. They explore the effects of transformations on graphs of diverse functions, including functions arising in an application, in order to abstract the general principle that transformations on a graph always have the same effect regardless of the type of the underlying function. They identify appropriate types of functions to model a situation, they adjust parameters to improve the model, and they compare models by analyzing appropriateness of fit and making judgments about the domain over which a model is a good fit. The description of modeling as "the process of choosing and using mathematics and statistics to analyze empirical situations, to understand them better, and to make decisions" is at the heart of this unit. The narrative discussion and diagram of the modeling cycle should be considered when knowledge of functions, statistics, and geometry is applied in a modeling context.

Unit 3: Modeling with Functions

Clusters and Instructional Notes

Common Core State Standards

- Create equations that describe numbers or relationships.

For A.CED.1, use all available types of functions to create such equations, including root functions, but constrain to simple cases. While functions used in A.CED.2, 3, and 4 will often be linear, exponential, or quadratic the types of problems should draw from more complex situations than those addressed in Algebra I. For example, finding the equation of a line through a given point perpendicular to another line allows one to find the distance from a point to a line. Note that the example given for A.CED. 4 applies to earlier instances of this standard, not to the current course.

- Interpret functions that arise in applications in terms of a context.

Emphasize the selection of a model function based on behavior of data and context.
A.CED. 1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
A.CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
A.CED. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.
A.CED. 4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.
F.IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *
F.IF. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. ${ }^{\star}$
F.IF. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. ${ }^{\star}$

Unit 3: Modeling with Functions

Clusters and Instructional Notes

- Analyze functions using different representations.

Focus on applications and how key features relate to characteristics of a situation, making selection of a particular type of function model appropriate.

- Build a function that models a relationship between two quantities.

Develop models for more complex or sophisticated situations than in previous courses.

- Build new functions from existing functions.

Use transformations of functions to find models as students consider increasingly more complex situations.
For F.BF.3, note the effect of multiple transformations on a single graph and the common effect of each transformation across function types. Extend F.BF.4a to simple rational, simple radical, and simple exponential functions; connect F.BF.4a to F.LE. 4.

- Construct and compare linear, quadratic, and exponential models and solve problems.

Consider extending this unit to include the relationship between properties of logarithms and properties of exponents, such as the connection between the properties of exponents and the basic logarithm property that $\log x y=\log x+\log y$.

Common Core State Standards

F.IF. 7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. ${ }^{\star}$
b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
F.IF. 8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
F.IF. 9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
F.BF. 1 Write a function that describes a relationship between two quantities.*
b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model..
F.BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k$, $k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
F.BF. 4 Find inverse functions.
a. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 x^{3}$ or $f(x)=(x+1) /(x-1)$ for $x \neq 1$.
F.LE. 4 For exponential models, express as a logarithm the solution to a $b^{c t}=d$ where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.

Unit 4: Inferences and Conclusions from Data

In this unit, students see how the visual displays and summary statistics they learned in earlier grades relate to different types of data and to probability distributions. They identify different ways of collecting data-including sample surveys, experiments, and simulations-and the role that randomness and careful design play in the conclusions that can be drawn.

Unit 4: Inferences and Co	
Clusters and Instructional Notes	
- Summarize, represent, and interpret data on a single	S
count or measurement variable.	s
While students may have heard of the normal	s
distribution, it is unlikely that they will have prior	c
experience using it to make specific estimates. Build on	und
students' understanding of data distributions to help	
them see how the normal distribution uses area to make	
estimates of frequencies (which can be expressed as	
probabilities). Emphasize that only some data are well	
described by a normal distribution.	

- Understand and evaluate random processes underlying statistical experiments.

For S.IC.2, include comparing theoretical and empirical results to evaluate the effectiveness of a treatment.

- Make inferences and justify conclusions from sample surveys, experiments, and observational studies.

In earlier grades, students are introduced to different ways of collecting data and use graphical displays and summary statistics to make comparisons. These ideas are revisited with a focus on how the way in which data is collected determines the scope and nature of the conclusions that can be drawn from that data. The concept of statistical significance is developed informally through simulation as meaning a result that is unlikely to have occurred solely as a result of random selection in sampling or random assignment in an experiment.
For S.IC. 4 and 5, focus on the variability of results from experiments-that is, focus on statistics as a way of dealing with, not eliminating, inherent randomness.

- Use probability to evaluate outcomes of decisions.

Extend to more complex probability models. Include situations such as those involving quality control, or diagnostic tests that yield both false positive and false negative results.

[^0]: *The (+) standards in this column are those in the Common Core State Standards that are not included in any of the Traditional Pathway courses. They would be used in additional courses developed to follow Algebra II.

[^1]: *In some cases clusters appear in more than one unit within a course or in more than one course. Instructional notes will indicate how these standards grow over time. In some cases only certain standards within a cluster are included in a unit.

[^2]: *Instructional suggestions will be found in italics in this column throughout the document.

[^3]: *In some cases clusters appear in more than one unit within a course or in more than one course. Instructional notes will indicate how these standards grow over time. In some cases only certain standards within a cluster are included in a unit.

[^4]: ${ }^{2}$ In this course rational functions are limited to those whose numerators are of degree at most 1 and denominators of degree at most 2 ; radical functions are limited to square roots or cube roots of at most quadratic polynomials.

[^5]: *In some cases clusters appear in more than one unit within a course or in more than one course. Instructional notes will indicate how these standards grow over time. In some cases only certain standards within a cluster are included in a unit.

[^6]: A.APR. 2 Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=$ O if and only if $(x-a)$ is a factor of $p(x)$.
 A.APR. 3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

